

More structures on the
space of modular forms;

Petersson inner product

and

Hecke operators

Petersson inner product

Definition: Let $M_k(\Gamma)$ be the space of holomorphic modular forms of weight k and congruence subgroup Γ . Let $S_k(\Gamma)$ be the analogous space of cusp forms.

The map $\langle \cdot, \cdot \rangle: M_k(\Gamma) \times S_k(\Gamma) \rightarrow \mathbb{C}$

$$\langle f, g \rangle := \int_{\mathcal{F}_\Gamma} f(z) \overline{g(z)} (\operatorname{Im} z)^k d\mu(z)$$

is called Petersson inner product, where

\mathcal{F}_Γ is a fundamental domain of $\Gamma \backslash \mathbb{H}$

$$d\mu(z) = \frac{y^2}{y^2} dx dy \quad z = x + iy, \quad x, y \in \mathbb{R}.$$

$\text{SL}_2(\mathbb{R})$ invariant measure

Questions:

- ① Does this integral converge?
- ② Does the definition depend on our choice of \mathcal{F}_Γ ?

Lemma: The integral is absolutely convergent, does not depend on a choice of \mathcal{F}_Γ , and the Petersson inner product is a positive definite Hermitian form on $S_k(\Gamma)$.

Lemma: The Eisenstein series $E_k \in M_k(\Gamma_1)$ is orthogonal to $S_k(\Gamma_1)$ w.r.t. Petersson inner product.

Proof: $\Gamma_\infty = \text{Stab}_\infty(\Gamma_1) = \left\{ \pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$.

$$1 \Big|_k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (c\tau + d)^{-k}.$$

$$\sum_{\gamma \in \Gamma_\infty \setminus \Gamma_1} 1 \Big|_k \gamma = \sum_{(c,d)=1} \frac{1}{(c\tau + d)^k} = \mathfrak{J}^{-1}(k) \sum_{(c,d) \in \mathbb{Z}^2 \setminus 0} \frac{1}{(c\tau + d)^k} \doteq E_k(\tau).$$

$$\int_{\Gamma_1 \setminus \mathbb{H}} E_k(\tau) \overline{f(\tau)} \text{Im}(\tau)^k d\mu(\tau) =$$

$$\int_{\Gamma_1 \setminus \mathbb{H}} E_k(\tau) \overline{f(\tau)} |Im(\tau)|^k d\mu(\tau) =$$

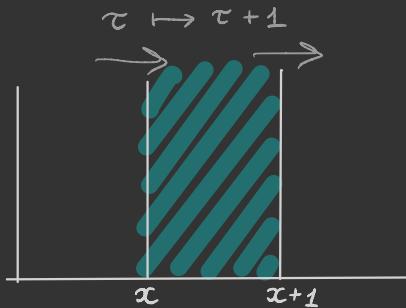
$$= \int_{\Gamma_1 \setminus \mathbb{H}} \left(\sum_{\Gamma_\infty \setminus \Gamma_1} 1 \Big|_\kappa \right) \overline{f(\tau)} |Im(\tau)|^k d\mu(\tau)$$

$$= \int_{\Gamma_1 \setminus \mathbb{H}} \sum_{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_\infty \setminus \Gamma_1} (c\tau + d)^{-k} \overline{(c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right)} |Im(\tau)|^k d\mu(\tau)$$

$$= \int_{\Gamma_1 \setminus \mathbb{H}} \sum_{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_\infty \setminus \Gamma_1} \overline{(c\tau + d)^k} \overline{(c\tau + d)^k} f\left(\frac{a\tau + b}{c\tau + d}\right) \operatorname{Im}(\tau)^k d\mu(\tau)$$

$$= \int_{\Gamma_1 \setminus \mathbb{H}} \sum_{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_\infty \setminus \Gamma_1} \overline{f\left(\frac{a\tau + b}{c\tau + d}\right)} \cdot \operatorname{Im}\left(\frac{a\tau + b}{c\tau + d}\right)^k d\mu\left(\frac{a\tau + b}{c\tau + d}\right)$$

$$= \int_{\Gamma_\infty \setminus \mathbb{H}} \overline{f(\tau)} \cdot \operatorname{Im}(\tau)^k d\mu(\tau)$$



$$= \int \left(\sum_{n=1}^{\infty} c_f(n) e^{2\pi i n \tau} \right) \overline{\operatorname{Im}(\tau)^k} d\mu(\tau) = \int_0^{\infty} \int_{x_0}^{x_0+1} \left(\sum_{n=1}^{\infty} c_f(n) e^{2\pi i (x+y)n} \right) y^{k-2} dy dx$$

$x_0 + iy_0$

$= 0$.

Remark: For Γ_1 : $\dim(M_k(\Gamma_1)) - \dim(S_k(\Gamma_1)) = 1$, $k \geq 4$

$$M_k(\Gamma_1) = \mathbb{C}E_k \oplus S_k(\Gamma_1)$$

For other groups Γ be define the Eisenstein space

$E_k(\Gamma)$ as $S_k(\Gamma)^\perp$ w.r.t. Petersson product.

Poincaré series

Lemma: For $n \in \mathbb{Z}_{\geq 1}$, there exists a unique cusp form $P_n \in S_k(\Gamma_1)$ such that

$$\langle f, P_n \rangle_{\text{Petersson}} = c_f(n) \text{ for all } f \in S_k(\Gamma_1).$$

Remark: ① P_n can be computed explicitly $P_n(z) = c_{n,k} \cdot \sum_{\gamma \in \Gamma_\infty \setminus \Gamma_1} e^{\frac{2\pi i n \gamma z}{k}}$

② From this representation of P_n the Fourier coefficients of P_n can be obtained

③ This Fourier coefficients are represented as a sum of certain infinite series, and are transcendental in general

Hecke operators.

Let us do the case of Γ_1 first.

2 definitions:

View modular forms as a function of lattices

Let F be a function on the set of lattices $\mathcal{N} \subset \mathbb{C}$.

Suppose that F satisfies:

$$F(\alpha \cdot \mathcal{N}) = \alpha^k F(\mathcal{N}), \quad \alpha \in \mathbb{C}^*$$

Define $f: \mathbb{H} \rightarrow \mathbb{C}$ by $f(\tau) := F(\mathbb{Z} + \tau\mathbb{Z})$.

Let $\tau \in \mathbb{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$:

$$\begin{aligned} f\left(\frac{a\tau + b}{c\tau + d}\right) &= F\left(\mathbb{Z} + \frac{a\tau + b}{c\tau + d}\mathbb{Z}\right) = (c\tau + d)^k F\left((c\tau + d)\mathbb{Z} + (a\tau + b)\mathbb{Z}\right) \\ &= (c\tau + d)^k F(\mathbb{Z} + \tau\mathbb{Z}) = (c\tau + d)^k f(\tau) \end{aligned}$$

For $m \in \mathbb{Z}_{\geq 1}$ we define the m -th Hecke operator

$$T_m F(\mathcal{N}) := \sum_{\mathcal{N}' \subset \mathcal{N}} F(\mathcal{N}') \quad [\mathcal{N} : \mathcal{N}'] = m$$

Now we need to translate this to the language of f .

Suppose $\mathcal{N} = \mathbb{Z} + \tau \mathbb{Z}$, $\mathcal{N}' \subset \mathcal{N}$ $[\mathcal{N} : \mathcal{N}'] = m$, then

$$\mathcal{N}' = (\alpha\tau + b)\mathbb{Z} + (c\tau + d)\mathbb{Z} \quad \text{for some}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{Z}) \quad \text{with} \quad \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = m.$$

$$T_m f(\tau) = \underbrace{m^{k-1}}_{\text{normalization}} \sum_{\substack{(\alpha \ b) \\ (\alpha \ b) \in \Gamma_1 \setminus \mathcal{M}_m}} (c\tau + d)^{-k} f\left(\frac{\alpha\tau + b}{c\tau + d}\right)$$

\leftarrow set of matrices

This definition is equivalent to :

$$(1) \quad T_m f = m^{k-1} \sum_{\substack{ad=m \\ a, d > 0}} \frac{1}{d^k} \sum_{b \bmod d} f\left(\frac{az+b}{d}\right)$$

Lemma: The collection $\Delta_m = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid ad=m, 0 \leq b < d \}$ is a complete set of right coset representatives of $\Gamma_1 \backslash M_m$. $M_m = \bigcup_{M \in \Delta_m} \Gamma_1 \cdot M$

On the level of Fourier coefficients:

Suppose $f(\tau) = \sum_{n=0}^{\infty} c_f(n) e^{2\pi i n \tau}$. Then

$$T_m f(\tau) = \sum_{n \geq 0} \left(\sum_{\substack{r \mid (m, n) \\ r > 0}} r^{k-1} c_f\left(\frac{mn}{r^2}\right) \right) e^{2\pi i n \tau}$$

Lemma: a) If $(m_1, m_2) = 1$ then $T_{m_1} \cdot T_{m_2} = T_{m_1 \cdot m_2}$
 $m_1, m_2 \in \mathbb{Z}_{\geq 1}$

b) $T_m \cdot T_n = T_n \cdot T_m$ $m, n \in \mathbb{Z}_{\geq 1}$

Proof: Exercise.

Reference: H. Iwaniec

„Topics in Classical Automorphic Forms“

» Another definition: Double coset operator

Read „A first course in modular forms“

Section 5.1.

Hecke operators are defined for $\Gamma_1(N)$.

Today: $\Gamma = \Gamma_1$

Theorem: The Hecke operator T_m is self-adjoint with respect to Petersson inner product.

Proof: „Topics in Classical Automorphic Forms”

Step 1: Action of Hecke operators on Poincaré series

$$(T_n P_m)(z) = \sum_{d|(m,n)} (n/d)^{k-1} P_{mnd^{-2}}$$

Step 2: $m, n \geq 1$

$$m^{k-1} T_n P_m = n^{k-1} T_m P_n$$

Step 3: $\langle T_n P_m, P_\ell \rangle = \langle P_m, T_n P_\ell \rangle \quad m \in \mathbb{Z}_{\geq 0}, n, \ell \in \mathbb{Z}_{\geq 1}$

Lemma: For $k > 2$, $m \geq 0$ and $n \geq 1$ we have

$$T_n P_m(z) = \sum_{d \mid (m, n)} (n/d)^{k-1} P_{mnd^{-2}}.$$

Proof:

We notice that

$$(T_n P_m)(z) = \sum_{g \in \Gamma_\infty \setminus \mathcal{M}_n} (c_g z + d_g)^{-k} e^{2\pi i m g(z)}.$$

Let \mathcal{A} and \mathcal{B} be any sets of right coset representatives of $\Gamma_\infty \setminus \Gamma$ and $\Gamma \setminus \mathcal{M}_n$ respectively.

Then naturally $\mathcal{B}\mathcal{A}$ is a set of right coset representatives of $\Gamma_\infty \setminus \mathcal{M}_n$.

$$T_n P_m(z) = n^{k-1} \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \mathcal{A}} (c_{\beta\alpha} z + d_{\beta\alpha})^{-k} e^{2\pi i m \beta \alpha(z)}$$

$$= n^{k-1} \sum_{ad=n} d^{-k} \sum_{b \pmod{d}} \sum_{\alpha \in \mathcal{A}} (c_{\alpha} z + d_{\alpha})^{-k} e^{2\pi i m \frac{a \alpha(z) + b}{m}}$$

$$= n^{k-1} \sum_{\substack{ad=n \\ d \mid m}} d^{1-k} \sum_{\alpha \in \mathcal{A}} (c_{\alpha} z + d_{\alpha})^{-k} e^{2\pi i \frac{am}{d} \alpha(z)}$$

$$= n^{k-1} \sum_{\substack{ad=n \\ d \mid m}} d^{1-k} P_{\frac{am}{d}}(z). \quad \square$$

Corollary: $m^{k-1} T_n P_m = n^{k-1} T_m P_n$

Corollary: For $m, n \geq 1$ and $f \in M_k(\Gamma_1)$

$$m^{k-1} \langle T_n f, P_m \rangle = n^{k-1} \langle T_m f, P_n \rangle$$

Theorem: For all $f \in M_k(\Gamma_1)$, $g \in S_k(\Gamma_1)$

$$\langle T_n f, g \rangle = \langle f, T_n g \rangle$$

Proof: It suffices to prove this formula for

$$f = P_m, \quad g = P_e \quad m \in \mathbb{Z}_{\geq 0}, \quad n \in \mathbb{Z}_{\geq 1}$$

Assume $m \neq 0$

$$\langle T_n P_m, P_e \rangle = \langle T_n P_e, P_m \rangle = \langle P_m, T_n P_e \rangle \quad \blacksquare$$

Definition: A cusp form $f \in S_k(\Gamma_1)$ is a Hecke eigenform if it is an eigenvector for all Hecke operators T_m , $m \in \mathbb{Z}_{\geq 1}$.

Theorem: The space $S_k(\Gamma_1)$ has basis consisting of Hecke eigenforms.

Lemma: Suppose that $T_m f = \lambda_m f$, $m \in \mathbb{Z}_{\geq 1}$. Then $c_f(m) = \lambda_m c_f(1)$.

Theorem (Multiplicity one) Suppose that $f, g \in S_k(\Gamma_1)$ are Hecke eigenforms and $T_m f = \lambda_m f$, $T_m g = \lambda_m g$ for all $m \in \mathbb{Z}_{\geq 1}$. Then $f = c \cdot g$ for some $c \in \mathbb{C}^*$.

Eigenfunctions of Hecke operators.

Examples:

① Eisenstein series \leftarrow This can be checked from Fourier expansion

② Ramanujan Δ function

① $\mathbb{C}E_K = S_K^\perp \Rightarrow T_m$ -s are self-adjoint

$$T_m(S_K) = S_K$$

Therefore $T_m(\mathbb{C}E_K) \subseteq \mathbb{C}E_K$

② $\dim(S_{12}) = 1 \Rightarrow T_m(\mathbb{C}\Delta) \subseteq \mathbb{C}\Delta$
 $\exists m$ such that $T_m \Delta = 0$

Let $f \in M_k(\Gamma_1)$ be a Hecke eigenform.

We normalize f s.t. $C_f(1) = 1$.

Then

$$C_f(m \cdot n) = C_f(m) \cdot C_f(n) \quad \text{if } (m, n) = 1, \quad m, n \in \mathbb{Z},$$

$$C_f(p^{v+1}) = C_f(p)C_f(p^v) - p^{k-1}C_f(p^{v-1}) \quad \text{if } p \text{ prime, } v \geq 1$$

Definition: The Hecke L -series of $f \in S_k(\Gamma_1)$ is

$$L(f, s) := \sum_{n=1}^{\infty} \frac{C_f(n)}{n^s}$$

Theorem (Euler product) If f is a Hecke eigenform, then

$$L(f, s) = \prod_{p \text{ prime}} \left(1 + \frac{C_f(p)}{p^s} + \frac{C_f(p^2)}{p^{2s}} + \dots\right) = \prod_{p \text{ prime}} \left(1 - C_f(p)p^s + p^{k-1-2s}\right)^{-1}$$

Lemma: Suppose that f is a cusp form of weight $k \in 2\mathbb{Z}_{>0}$ and group Γ_1 , and f has the Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} c_f(n) e^{2\pi i n z}$$

Then $c_f(n) = \mathcal{O}(n^{k/2})$ as $n \rightarrow \infty$

Proof: $\det f \in S_K(\Gamma_1)$.

Then the function $|f(z)| \operatorname{Im}(z)^{K/2} =: g(z)$
is Γ_1 -invariant.

Moreover, $g(z)$ is bounded as $z \in \mathbb{H}$

Suppose $|g(z)| < C$, $z \in \mathbb{H}$ for some $C \in \mathbb{R}_+$

We estimate the Fourier coefficients of f in the following way:

$$C_f(n) = \int_{iy_0}^{iy_0+1} f(z) e^{-2\pi i n z} dz \quad y_0 > 0$$

$$|C_f(n)| = \left| \int_{i/n}^{i/n+1} f(z) e^{-2\pi i n z} dz \right| = \left\{ \begin{array}{l} \text{we choose} \\ y_0 = \frac{1}{n} \end{array} \right\} = \left| \int_{i/n}^{i/n+1} f(z) \operatorname{Im}(z)^{K/2} \cdot \operatorname{Im}(z)^{-K/2} e^{-2\pi i n z} dz \right|$$

$$\leq \int_{i/n}^{i/n+1} |f(z) \operatorname{Im}(z)^{K/2}| \cdot n^{K/2} \cdot e^{2\pi} \cdot \left| e^{-2\pi i n \operatorname{Re}(z)} \right| dz \leq C \cdot e^{2\pi} \cdot n^{K/2}$$

This finishes the proof of the lemma \square

Estimate $C_f(n) = O(n^{k/2})$ implies:
 $L(f, s)$ converges absolutely in the half-plane

$$\operatorname{Re}(s) > 1 + k/2$$

Definition: $L^*(f, s) := (2\pi)^s \Gamma(s) L(f, s)$

Theorem: Let f be a cusp form of weight k on the full modular group. Then the L -series $L(f, s)$ extends to an entire function of s and satisfies functional equation:

$$L^*(f, k-s) = (-1)^{k/2} L^*(f, s)$$

$$\text{Proof: } L^*(f, s) = (2\pi)^s \Gamma(s) L(f, s) = \{$$

We use the identity $\int_0^\infty t^{s-1} e^{-2\pi nt} dt = (2\pi)^s \Gamma(s) n^s$

$$\{ = \sum_{n=1}^{\infty} c_f(n) \int_0^\infty t^{s-1} e^{-2\pi nt} dt =$$

$$= \int_0^\infty t^{s-1} f(it) dt , \quad \operatorname{Re}(s) > \frac{k}{2} + 1$$

This integral converges absolutely for all $s \in \mathbb{C}$,

because f is a cusp form and

$$|f(it)| = O(e^{-2\pi t}), t \rightarrow \infty \text{ and } |f(it)| = O(t^k f^{\frac{-2\pi}{t}}), t \rightarrow 0$$

Now we use the modularity of f

$$\int_0^\infty t^{s-1} f(it) dt = \int_0^\infty t^{s-1} t^{-k} f\left(\frac{i}{t}\right) dt$$

$$\left. \begin{array}{l} \text{change of variables} \\ t \mapsto \frac{1}{u} \end{array} \right\}$$

$$= \int_0^\infty u^{1-s} u^k f(iu) u^{-2} du$$

$$= \int_0^\infty u^{k-s-1} f(iu) du = L^*(f, k-s) \blacksquare$$

Ramanujan conjecture

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z}$$

In 1916 S. Ramanujan conjectured that

$$|\tau(p)| \leq 2p^{11/2} \text{ for all primes } p.$$

$$|\tau(n)| \leq d(n) n^{11/2},$$

where $d(n)$ is the number of positive divisors of n

Ramanujan-Petersson conjecture for holomorphic cusp forms

$$|\lambda(n)| \leq d(n)$$

Here $\lambda(n)$ is a properly normalised Hecke eigenvalue

Theorem (Deligne 1971), (Deligne-Serre 1974)

↑ for weight 1